Micro-Doppler Based Classification of Human Aquatic Activities via Transfer Learning of Convolutional Neural Networks
نویسندگان
چکیده
منابع مشابه
Micro-Doppler Based Classification of Human Aquatic Activities via Transfer Learning of Convolutional Neural Networks
Accurate classification of human aquatic activities using radar has a variety of potential applications such as rescue operations and border patrols. Nevertheless, the classification of activities on water using radar has not been extensively studied, unlike the case on dry ground, due to its unique challenge. Namely, not only is the radar cross section of a human on water small, but the micro-...
متن کاملA New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks
Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...
متن کاملClassification of human activity on water through micro-Dopplers using deep convolutional neural networks
Detecting humans and classifying their activities on the water has significant applications for surveillance, border patrols, and rescue operations. When humans are illuminated by radar signal, they produce micro-Doppler signatures due to moving limbs. There has been a number of research into recognizing humans on land by their unique micro-Doppler signatures, but there is scant research into d...
متن کاملHierarchical Transfer Convolutional Neural Networks for Image Classification
In this paper, we address the issue of how to enhance the generalization performance of convolutional neural networks (CNN) in the early learning stage for image classification. This is motivated by real-time applications that require the generalization performance of CNN to be satisfactory within limited training time. In order to achieve this, a novel hierarchical transfer CNN framework is pr...
متن کاملDocument Image Classification with Intra-Domain Transfer Learning and Stacked Generalization of Deep Convolutional Neural Networks
In this work, a region-based Deep Convolutional Neural Network framework is proposed for document structure learning. The contribution of this work involves efficient training of region based classifiers and effective ensembling for document image classification. A primary level of ‘inter-domain’ transfer learning is used by exporting weights from a pre-trained VGG16 architecture on the ImageNe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2016
ISSN: 1424-8220
DOI: 10.3390/s16121990